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Summary 

Selective hydrogenation of 1,3-diolefins to mainly terminal monoolefins was 
carried out in the presence of RhH(PPh3 )4 and [Rh(CO), PPh3 ] 2 - 2C6 H, as 
homogeneous catalysts. Under identical conditions cycloolefins were slowly ob- 
tained from cyclodiolefins. 

Introduction 

Homogeneous hydrogenation by means of rhodium complexes has been ex- 
tensively investigated [l-5] . As already reported, the selective hydrogenation of 
carbon-carbon double bonds in molecules containing other-potentially reducible 
groups can be achieved using catalysts such as RhCl(PPh,), and RhH(CO)(PPh,), 
[ 6, 71. The former catalyst was also reported to effect the selective hydrogena- 
tion of conjugated 1,3&olefins, yielding mainly internal olefins. For instance, 
hydrogenation of 1,3-pentadiene catalyzed by RhC1(PPh3)3 occurred with initial 
attack at the terminal unsaturation and consequent formation of 2-pentene [S] . 
In the course of our investigations, we had observed that RhH(PPh,), [9,11] 
and [Rh(CO),PPh,] 2 - 2 CsH, [ 111 catalyzed the stereo-selective hydrogenation 
of l,&dienes to ar-olefins [12], one of only a few examples of homogeneously 
catalyzed hydrogenations of 1,3-dienes to terminal monoenes that has been 
described*. 

*The hydrogenation of isoPrene and 2,3_dimethyl-1.3-butadiene using RhCl(PPh313 with formation of 
ta’mm& monoolefins as the main products has been recently reported [131. 
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Results 

It is known that triphenylphosphine complexes do not easily dissolve; that 
is the reason why we prepared our catalytic systems by adding some triethyl- 
phosphine to a suspension of [Rh(C0)2PPh,] z - 2C6H6 (I) and RhH(PPh& (II) 
at a PEt3 to Rh ratio of l/l. In this way the rhodium complexes dissolved quite 
easily with formation of a homogeneous solution. Hydrogenation was carried out 
under a constant hydrogen pressure of 15 atm. and at 50-120”. In order to ob- 
tain selective hydrogenation the reaction mixture was quenched when the hy- 
drogen adsorption rate, which was fairly constant for the whole reaction, showed 
a substantial increase corresponding to the subsequent hydrogenation of the re- 
sulting monoenes. Under these conditions (for more details, see experimental) in the 
hydrogenation of l,$-dienes, selectivities to monomers as high as 80 - 95% were ob- 
tained. No solvent effect on either catalyst activity or selectivity was observed; all 
runs described here were carried out using either cyclohexane or dioxane as solvents. 

Figure 1 shows the results for hydrogenation of butadiene catalyzed by 
[Rh(C0)2PPh,] 3 - 2 C&H6 _ A constant selectivity (over 90%) to intermediate 
monoenes was observed up to a certain diene conversion, then it sharply decreas- 
ed with the formation of butane. There is a substantial stereoselectivity, with 
over 80% of the total monoenes being I-butene. 

The introduction of a methyl group into the 1,3 conjugated system de- 
creases both the selective formation of monoolefins (see Table 1 and Figs. 2 and 
3) and the stereoselective formation of a-olefins. Although kinetic data are not 
yet available it is clear (Table 1) that RhH(PPhJ)4 is more active and selective 
than [Rh(C0)2PPh3] 2 - 2C6H6, the latter requiring more drastic reaction condi- 
tions. Moreover, in the case of [Rh(C0)2PPh3] 2 -2C6H6 an induction period was 
always observed, which probably indicates that a transformation of the initial 
rhodium complex into a catalytically active species was necessary. Although 
such a linear internal dtilefin as 2,4-hexadiene could not be hydrogenated at all 
under conditions similar to those reported above, we achieved hydrogenation of 
conjugated (cyclopentadiene, 1,3-cyclooctadiene) and unconjugated (l,Bcyclo- 
octadiene) cyclic diolefins to monoolefins with high selectivity (Table 2). With 
these compounds more drastic reaction conditions had to be used in order to ob- 

Time (mid Time tminl 

Fig. 1. Hydrogenation of butadiene with [Rh(CO)ZPPh3]-2C6H6 + 2PEt3. Dioxane: 8.3 ml; 
0.21 X 10-a mol;~~bstrate: 3 Butadiene:x I-butene;~ 2-butenes;.butane. 

Cattint: 
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Fig. 2. Hydrogenation of l.&pentadiene with RhH(PPh3)4 t PEt3. Cyclohexane: 16.5 ml; catalyst: 0.21 X 
10-3 m01: subkate: 14 X lo-2 mol: hydrogen pressure: 15 atm: temp.: 46°C. 0 1,3-Pentadiene; x l-Pen- 
tene: A 2-pentenes: l pentane. 

Time (min) 

fig. 3. Hydrogenation of isoprene with RhH<PPhs)a + PEt+ Cyclohexane: 8.3 ml: catalyst: 0.21 X 10m3 
mol; substrate: 7 X lo-2 mol; hydrogen pre-e: 15 ato: temp.: 92’C. 0 koprene; x 2-methyI-1-butene: 
+ 3-methyl-l-butene; 4 2-methyl-2-butene: 0 2-methul-butaw. 



92 

TABLE 1 

SELECTIVE HYDROGENXTION OF CONJUGATED DIENES 

Substrate 7 X 10-2 mo?: solvent 8.3 ml; otalyst: as Rb 0.21 X 10-3 mol: hydrogen pressure 15 atm. I is 
CRh(CO)~PPh~] 2’ 2C6Hg: (II) is RhH(PPh3)4. 1.3-Pentadiene is 81% trans and 1956 cis. 

Substrate Catalyst and Temp. Time Products 
(5 COrwn.) solvent eo (min.) (%) 

1.3-Butadiene I + 2PEt3 
(69) dioxane 

1,3-Butadiene I + 2PEt3 
(60) cydohexane 

1.3-Pentadiene I + 2PEt3 
(43) dioxane 

1,3-Butadiene II” + PEt3 
(65) cyclohexane 

1,3-Pentadiene 
(64)b 

II + PEt3 
cyclohexane 

2.4-Hexadiene I + 2PEt3 
(0) cyclohexane 

I + 2PEt3 
cyclohexane 

II + PEt3 
cyclohexane 

65 

65 

65 

50 

46 

92 

92 

120 

45 

46 

45 

100 

330 

330 

290 

1-Butene 
cis-2-Butene 
h-ans-2-Butene 
Butane 
I-Butene 
cis-2-Butene 
tmns-2-Butene 
Butane 
1-Pentene 
cis-2-Pentene 
trons-2-Pentene 
Pentane 
1-Butene 
cis-2-Butene 
trans-2-Butene 
Butane 
1-Pentene 
cis-2-Pentene 
trans-z-Pentene 
Pentane 
2-Methyl-1-Butene 
P-Methyl-2-Butene 
3-Methyl-1-Butene 
2-Methyl-Butane 
2-Methyl-1-Butene 
2-Methyl-2-Butene 
3-hietbyl-1-Butene 
2-hfethyl-Butane 
no reaction 

(82.7) 
( 4.7) 
( 6.8) 
( 5.8) 
(82.5) 
( 4.8) 
( 6.8) 
( 5.9) 
(59.0) 
i 9.8j 

(12.6) 
(18.6) 
(87.0) 
( 3.8) 
( 5.7) 
( 3.5) 
(60.0) 
(15.0) 
(14.0) 
(11.0) 
(21.2) 
(42.0) 
( 4.8) 
(32.0) 
<29.0) 
(41.0) 
(13.0) 
(17.0) 

= The catalyst was 0.1 x 10-3 mol. b Substrate and solvent were respectively 14 X lo-* mol and 16.5 ml. 

tain acceptable hydrogenation rates compared with the earlier compounds. With 
1,5-cyclooctadiene, isomerization to 1,3-cyclooctadiene occurred before hydro- 
genation. In the cyclopentadiene hydrogenation, the diolefin dimerization occurr- 
ed more rapidly than selective hydrogenation. However, if the dimer is consider- 
ed as an unconverted product, the selectivity to cyclopentene is as high as 91%. 

TABLE 2 

SELECTIVE HYDROGENATION OF CYCLODIENES 

Substrate 7 X lo+ mol; solvent 6.4 ml .: CRh(C0)2PPh3) ~‘2CgH6 + 2PEt3 is the catalyst (0.21 X 10-3 mol); 
hydrogen pte-e 15 atm. 

Substrate Catalyst and Temp. Time Products 
(% convn.) solvent eo (h) (46) 

1.5-Cyclooctadiene 
(98.7) 

1.3-Cyclooctadiene 
(38) 

Cyclopentadiene 
(90) 

Cyclohexane so 16 

Cyclohexane 100 10 

Dioxane 95 4 

1,3-Cyclooctadiene 
Cyclooctene 
Cyclooctane 

CYdOOCtell~ 

CYdOOCtanlZ 

Cyclopentene 
Cyclopentane 
Dicyclopentadiene 

(39.2) 

(59.0) 
( 1.8) 

(99.7) 
( 0.3) 

(14.3) 
( 1.3) 
(84.4) 
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Discussion 

Selective hydrogenation of 1,3-dienes has been recently reviewed [6,7]. 
Usually, high selectivity is achieved with complexes which do not hydrogenate 
monoolefins, such as Co(CN), 3-, or which very slowly hydrogenate the internal 
monoolefins formed, such as RhC1(PPh3)3 or RuHCl(PPh3)3 _ In both cases the 
selectivity is kinetically controlled [6] _ In the work reported here we observed 
a high selectivity toward formation of ar-monoenes, which however, could be 
easily hydrogenated by the same catalytic systems, as is found in the selective 
heterogeneous hydrogenation of dienes. Such selectivity is maintained until a 
specific residual concentration of the diene is reached. Therefore, this is a ther- 
modynamically controlled selectivity due to the strong interaction of residual 
diolefin with the catalytic system. A.similar behaviour, but with a lower selec- 
tivity, was described for hydrogenations catalyzed by [Co(CO), { P(n-but), }] 3 and 
~~-C,H,CO(CO)~ {P(n-but),} [ 141. In both cases, the strength of the diene-metal 
interaction probably is the most important factor for selectivity control. The 
different values of the observed selectivities could reflect the tendency of 1,3- 
dienes to form ally1 intermediates that are more stable for rhodium than for 
cobalt, which is not unexpected_ 

Stereoselectivity in the reaction merits some discussion. Usually, for many 
catalytic systems, the assumption has been made that o-alkenyl and/or ~-ally1 
species are involved as intermediates [ 61. Evidence exists concerning the forma- 
tion of these complexes by diene insertion into metal-hydrogen bonds. o-Alke- 
nyl and r-ally1 structures have been detected in the pentacyanocobaltate-catal- 
yzed hydrogenation of dienes and the existence of a (T-T equilibrium has been pro- 
posed to explain the distribution of the hydrogenation products and stereoselec- 
tivity. 

Similar intermediates could probably also be postulated for rhodium com- 
plexes. When a-alkenyl and n-ally1 species are involved, formation of terminal 
or internal olefins can be related to their structure: o-alkenyl species should 
give either a terminal or an internal olefin, whilst 7r-ally1 species should give only 
a mixture of both olefins. In our case o-alkenyl species should predominate be- 
cause of the presence of an excess of ligand which affects the 0-r conversion 
(eqn. 1). 

* L,, M(a-alkenyl) 
-I. 

On the basis of the experimental results we can postulate that o-alkenyl structu- 
res like I or II could be present, with I being predominant for butadiene and 1,3- 
pentadiene. Methyl substitution in isoprene could exert considerable steric and 
eiectronic effects, which would affect the equilibrium (1) and the o-alkenyl 
structures; II could be predominant in this case. 

YH2 
7” 

L_,, Rh -CH 

CH, R’ 

(I) 

CH, 
dR 

&H 

L,, Rh - CHR’ 

(II) 

-R = R’ = H 

R=HandR’=CH3 

R=CH3 andR’=H 
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As regards the formation of cy-olefin we can add that it reflects the compo- 
sition of the direct hydrogenation products and is due to the very poor isomeri- 
zation properties of the catalytic systems here employed. In fact, we observe 
not only the predominant presence of ru-olefins, but also that the cis-tram ratio 
of 2-olefins is very far from the equilibrium value and is fairly constant during 
the reaction period (Figs. 1 and 2). 

Experimental 

The zero-valent complex [Rh(CO)ZPPh3]2-2C6H6 or the hydride complex 
RhH(PPh& prepared as previously reported [ll] were dissolved before use. Yel- 
low solutions “in vitro” were obtained either in dioxane or in cyclohexane by add- 
ing a small amount of triethj’lphosphine (PE& /Rh = 1) and bubbling hydrogen 
slowly through the solution. In a typical experiment, the catalytic solution was 
introduced into a 50 ml stainless steel autoclave previously purged with an inert 
gas; it was then charged with diolefin and hydrogen was pumped in. The tempera- 
ture was reached by heat&g the batch quickly. Pressure was kept constant for the 
duration of the reaction by replenishing the gas as it was consumed. As a rule with 
1,3-diolefins, the batch was rapidly quenched when the rate, nearly constant for 
most of the reaction, showed a substantial increase. The product, on cooling, was 
a light yellow solution when using 1,3-diolefins, but was dark red when using 
eyclodiolefins_ 

Amrlyses were carried out by gas-chromatography either on the final product 
or on a small sample drawn from the autoclave during the reaction. 
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